Equivariant Moore spaces and the Dade group

dc.citation.epage237en_US
dc.citation.spage209en_US
dc.citation.volumeNumber309en_US
dc.contributor.authorYalçın, E.en_US
dc.date.accessioned2018-04-12T11:13:29Z
dc.date.available2018-04-12T11:13:29Z
dc.date.issued2017en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet G be a finite p-group and k be a field of characteristic p. A topological space X is called an n-Moore space if its reduced homology is nonzero only in dimension n. We call a G-CW-complex X an n_-Moore G-space over k if for every subgroup H of G, the fixed point set XH is an n_(H)-Moore space with coefficients in k, where n_(H) is a function of H. We show that if X is a finite n_-Moore G-space, then the reduced homology module of X is an endo-permutation kG-module generated by relative syzygies. A kG-module M is an endo-permutation module if Endk(M)=M⊗kM⁎ is a permutation kG-module. We consider the Grothendieck group of finite Moore G-spaces M(G), with addition given by the join operation, and relate this group to the Dade group generated by relative syzygies. © 2017 Elsevier Inc.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:13:29Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.embargo.release2019-03-17en_US
dc.identifier.doi10.1016/j.aim.2017.01.017en_US
dc.identifier.issn18708
dc.identifier.urihttp://hdl.handle.net/11693/37440
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.aim.2017.01.017en_US
dc.source.titleAdvances in mathematicsen_US
dc.subjectBiset functorsen_US
dc.subjectBorel–Smith functionsen_US
dc.subjectDade groupen_US
dc.subjectEquivariant Moore spacesen_US
dc.subjectOrbit categoryen_US
dc.titleEquivariant Moore spaces and the Dade groupen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Equivariant_Moore_spaces_and_the_Dade_group.pdf
Size:
485.63 KB
Format:
Adobe Portable Document Format
Description:
Full printable version