Asymptotic properties of Jacobi matrices for a family of fractal measures

dc.citation.epage21en_US
dc.citation.issueNumber1en_US
dc.citation.spage10en_US
dc.citation.volumeNumber27en_US
dc.contributor.authorAlpan, G.en_US
dc.contributor.authorGoncharov, A.en_US
dc.contributor.authorŞimşek, A. N.en_US
dc.date.accessioned2019-02-21T16:03:14Z
dc.date.available2019-02-21T16:03:14Z
dc.date.issued2018en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe study the properties and asymptotics of the Jacobi matrices associated with equilibrium measures of the weakly equilibrium Cantor sets. These family of Cantor sets were defined, and different aspects of orthogonal polynomials on them were studied recently. Our main aim is to numerically examine some conjectures concerning orthogonal polynomials which do not directly follow from previous results. We also compare our results with more general conjectures made for recurrence coefficients associated with fractal measures supported on (Formula presented.).
dc.description.provenanceMade available in DSpace on 2019-02-21T16:03:14Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.identifier.doi10.1080/10586458.2016.1209710
dc.identifier.issn1058-6458
dc.identifier.urihttp://hdl.handle.net/11693/50087
dc.language.isoEnglish
dc.publisherTaylor and Francis
dc.relation.isversionofhttps://doi.org/10.1080/10586458.2016.1209710
dc.source.titleExperimental Mathematicsen_US
dc.subjectCantor setsen_US
dc.subjectOrthogonal polynomialsen_US
dc.subjectParreau-Widom setsen_US
dc.subjectWidom factorsen_US
dc.subjectZero spacingen_US
dc.titleAsymptotic properties of Jacobi matrices for a family of fractal measuresen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Asymptotic_properties_of_jacobi_matrices_for_a_family_of_fractal_measures.pdf
Size:
985.27 KB
Format:
Adobe Portable Document Format
Description:
Full printable version