Automatic code optimization using graph neural networks

buir.advisorÖztürk, Özcan
dc.contributor.authorPeker, Melih
dc.date.accessioned2023-02-07T07:50:35Z
dc.date.available2023-02-07T07:50:35Z
dc.date.copyright2023-01
dc.date.issued2023-01
dc.date.submitted2023-01-23
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Master's): Bilkent University, Department of Computer Engineering, İhsan Doğramacı Bilkent University, 2023.en_US
dc.descriptionIncludes bibliographical references (leaves 82-89).en_US
dc.description.abstractCompilers provide hundreds of optimization options, and choosing a good optimization sequence is a complex and time-consuming task. It requires extensive effort and expert input to select a good set of optimization flags. Therefore, there is a lot of research focused on finding optimizations automatically. While most of this research considers using static, spatial, or dynamic features, some of the latest research directly applied deep neural networks on source code. We combined the static features, spatial features, and deep neural networks by rep-resenting source code as graphs and trained Graph Neural Network (GNN) for automatically finding suitable optimization flags. We chose eight binary optimization flags and two benchmark suites, Polybench and cBench. We created a dataset of 12000 graphs using 256 optimization flag combinations on 47 benchmarks. We trained and tested our model using these benchmarks, and our results show that we can achieve a maximum of 48.6%speed-up compared to the case where all optimization flags are enabled.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2023-02-07T07:50:35Z No. of bitstreams: 1 B161706.pdf: 3559774 bytes, checksum: 9d5d43ce368ec8b32af9c119a97377f5 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-07T07:50:35Z (GMT). No. of bitstreams: 1 B161706.pdf: 3559774 bytes, checksum: 9d5d43ce368ec8b32af9c119a97377f5 (MD5) Previous issue date: 2023-01en
dc.description.statementofresponsibilityby Melih Pekeren_US
dc.embargo.release2023-07-23
dc.format.extentxv, 106 leaves : illustrations, charts ; 30 cm.en_US
dc.identifier.itemidB161706
dc.identifier.urihttp://hdl.handle.net/11693/111195
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCode optimizationen_US
dc.subjectGraph neural networksen_US
dc.subjectGCCen_US
dc.subjectCompilersen_US
dc.titleAutomatic code optimization using graph neural networksen_US
dc.title.alternativeÇizge yapay sinir ağları kullanılarak otomatik program eniyilemesien_US
dc.typeThesisen_US
thesis.degree.disciplineComputer Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B161706.pdf
Size:
3.39 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: