Planes in cubic fourfolds

buir.contributor.authorDegtyarev, Alex
dc.citation.epage258en_US
dc.citation.issueNumber2
dc.citation.spage228
dc.citation.volumeNumber10
dc.contributor.authorDegtyarev, Alex
dc.contributor.authorItenberg, I.
dc.contributor.authorOttem, J. C.
dc.date.accessioned2024-03-15T08:23:23Z
dc.date.available2024-03-15T08:23:23Z
dc.date.issued2023
dc.departmentDepartment of Mathematics
dc.description.abstractWe show that the maximal number of planes in a complex smooth cubic fourfold in P5 is 405, realized by the Fermat cubic only; the maximal number of real planes in a real smooth cubic fourfold is 357, realized by the so-called Clebsch–Segre cubic. Altogether, there are but three (up to projective equivalence) cubics with more than 350 planes © 2023,Algebraic Geometry. All Rights Reserved.
dc.description.provenanceMade available in DSpace on 2024-03-15T08:23:23Z (GMT). No. of bitstreams: 1 Planes_in_cubic_fourfolds.pdf: 559507 bytes, checksum: 75b67d5207a49d83f938d84c3219efeb (MD5) Previous issue date: 2023en
dc.identifier.doi10.14231/AG-2023-007
dc.identifier.issn23131691
dc.identifier.urihttps://hdl.handle.net/11693/114785
dc.language.isoen
dc.publisherEuropean Mathematical Society Publishing House
dc.relation.isversionofhttps://dx.doi.org/10.14231/AG-2023-007
dc.source.titleAlgebraic Geometry
dc.subject2-planes
dc.subjectCubic fourfold
dc.subjectDiscriminant form
dc.subjectIntegral lattice
dc.subjectNiemeier lattice
dc.titlePlanes in cubic fourfolds
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Planes_in_cubic_fourfolds.pdf
Size:
546.39 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: