Planes in cubic fourfolds
buir.contributor.author | Degtyarev, Alex | |
dc.citation.epage | 258 | en_US |
dc.citation.issueNumber | 2 | |
dc.citation.spage | 228 | |
dc.citation.volumeNumber | 10 | |
dc.contributor.author | Degtyarev, Alex | |
dc.contributor.author | Itenberg, I. | |
dc.contributor.author | Ottem, J. C. | |
dc.date.accessioned | 2024-03-15T08:23:23Z | |
dc.date.available | 2024-03-15T08:23:23Z | |
dc.date.issued | 2023 | |
dc.department | Department of Mathematics | |
dc.description.abstract | We show that the maximal number of planes in a complex smooth cubic fourfold in P5 is 405, realized by the Fermat cubic only; the maximal number of real planes in a real smooth cubic fourfold is 357, realized by the so-called Clebsch–Segre cubic. Altogether, there are but three (up to projective equivalence) cubics with more than 350 planes © 2023,Algebraic Geometry. All Rights Reserved. | |
dc.description.provenance | Made available in DSpace on 2024-03-15T08:23:23Z (GMT). No. of bitstreams: 1 Planes_in_cubic_fourfolds.pdf: 559507 bytes, checksum: 75b67d5207a49d83f938d84c3219efeb (MD5) Previous issue date: 2023 | en |
dc.identifier.doi | 10.14231/AG-2023-007 | |
dc.identifier.issn | 23131691 | |
dc.identifier.uri | https://hdl.handle.net/11693/114785 | |
dc.language.iso | en | |
dc.publisher | European Mathematical Society Publishing House | |
dc.relation.isversionof | https://dx.doi.org/10.14231/AG-2023-007 | |
dc.source.title | Algebraic Geometry | |
dc.subject | 2-planes | |
dc.subject | Cubic fourfold | |
dc.subject | Discriminant form | |
dc.subject | Integral lattice | |
dc.subject | Niemeier lattice | |
dc.title | Planes in cubic fourfolds | |
dc.type | Article |