Observer based friction cancellation in mechanical systems

Date

2014

Editor(s)

Advisor

Morgül, Ömer

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
16
downloads

Series

Abstract

In real life feedback control applications of mechanical systems, friction and time delays are two important issues that might have direct effects on the performance of systems. Hence, an adaptive nonlinear observer based friction compensation for a special time delayed system is presented in this thesis. Considering existing delay, an available Coulomb observer is modified and closed loop system is formed by using a Smith predictor based controller as if the process is delay free. Implemented hierarchical feedback system structure provides two-degree of freedom and controls both velocity and position separately. For this purpose, controller parametrization method is used to extend Smith predictor structure to the position control loop for different types of inputs and disturbance attenuation. Simulation results demonstrate that without requiring much information about friction force, the method can significantly improve the performance of a control system in which it is applied.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type