Direct evidence for the instability and deactivation of mixed-oxide systems: influence of surface segregation and subsurface diffusion

dc.citation.epage22443en_US
dc.citation.issueNumber45en_US
dc.citation.spage22438en_US
dc.citation.volumeNumber115en_US
dc.contributor.authorEmmez, E.en_US
dc.contributor.authorVovk, E. I.en_US
dc.contributor.authorBukhtiyarov V. I.en_US
dc.contributor.authorOzensoy, E.en_US
dc.date.accessioned2016-02-08T09:50:09Z
dc.date.available2016-02-08T09:50:09Z
dc.date.issued2011en_US
dc.departmentDepartment of Chemistryen_US
dc.description.abstractIn the current contribution, we provide a direct demonstration of the thermally induced surface structural transformations of an alkaline-earth oxide/transition metal oxide interface that is detrimental to the essential catalytic functionality of such mixed-oxide systems toward particular reactants. The BaOx/TiO2/Pt(111) surface was chosen as a model interfacial system where the enrichment of the surface elemental composition with Ti atoms and the facile diffusion of Ba atoms into the underlying TiO2 matrix within 523 873 K leads to the formation of perovskite type surface species (BaTiO3/Ba2TiO4/BaxTiyOz). At elevated temperatures (T > 973 K), excessive surface segregation of Ti atoms results in an exclusively TiO2/TiOx-terminated surface which is almost free of Ba species. Although the freshly prepared BaOx/TiO2/Pt(111) surface can strongly adsorb ubiquitous catalytic adsorbates such as NO2 and CO2, a thermally deactivated surface at T > 973 K practically loses all of its NO2/CO2 adsorption capacity due to the deficiency of surface BaOx domains.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:50:09Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.1021/jp206969hen_US
dc.identifier.eissn1932-7455
dc.identifier.issn1932-7447
dc.identifier.urihttp://hdl.handle.net/11693/21715
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/jp206969hen_US
dc.source.titleJournal of Physical Chemistry Cen_US
dc.subjectAdsorption capacitiesen_US
dc.subjectAlkaline earthen_US
dc.subjectCatalytic functionalitiesen_US
dc.subjectElemental compositionsen_US
dc.subjectElevated temperatureen_US
dc.subjectInterfacial systemsen_US
dc.subjectMatrixen_US
dc.subjectMetal oxide interfaceen_US
dc.subjectPerovskite typeen_US
dc.subjectStructural transformationen_US
dc.subjectSurface speciesen_US
dc.subjectThermally induceden_US
dc.subjectTi atomsen_US
dc.subjectTiOen_US
dc.subjectAdsorptionen_US
dc.subjectAtomsen_US
dc.subjectBariumen_US
dc.subjectBarium compoundsen_US
dc.subjectCarbon dioxideen_US
dc.subjectMetallic compoundsen_US
dc.subjectNitrogen oxidesen_US
dc.subjectPerovskiteen_US
dc.subjectPlatinumen_US
dc.subjectTitanium dioxideen_US
dc.subjectSurface segregationen_US
dc.titleDirect evidence for the instability and deactivation of mixed-oxide systems: influence of surface segregation and subsurface diffusionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Direct Evidence for the Instability and Deactivation of Mixed-Oxide Systems Influence of Surface Segregation and Subsurface Diffusion.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format
Description:
Full printable version