Martingale representation theorem for diffusion in infinite dimensional spaces and applications

buir.advisorÜstünel, Ali Süleyman
dc.contributor.authorAydın, Uğur
dc.date.accessioned2023-04-07T10:59:02Z
dc.date.available2023-04-07T10:59:02Z
dc.date.copyright2023-03
dc.date.issued2023-03
dc.date.submitted2023-04-04
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Master's): Bilkent University, Department of Mathematics, İhsan Doğramacı Bilkent University, 2023.en_US
dc.descriptionIncludes bibliographical references (leave 63-65).en_US
dc.description.abstractWe show that square integrable martingales adapted to the filtration generated by a weak solution of a stochastic differential equation driven by a cylindrical Wiener process on a separable real Hilbert space that has the weak uniqueness property has a martingale representation driven by the martingale part of the stochastic differential equation.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2023-04-07T10:59:02Z No. of bitstreams: 1 B161890.pdf: 482423 bytes, checksum: 8dd36a13c233fe2ddc50ec42819f6e50 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-04-07T10:59:02Z (GMT). No. of bitstreams: 1 B161890.pdf: 482423 bytes, checksum: 8dd36a13c233fe2ddc50ec42819f6e50 (MD5) Previous issue date: 2023-03en
dc.description.statementofresponsibilityby Uğur Aydınen_US
dc.format.extentvii, 65 leaves ; 30 cmen_US
dc.identifier.itemidB161930
dc.identifier.urihttp://hdl.handle.net/11693/112322
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStochastic differential equationen_US
dc.subjectMartingale representationen_US
dc.subjectMalliavin calculusen_US
dc.titleMartingale representation theorem for diffusion in infinite dimensional spaces and applicationsen_US
dc.title.alternativeDifüzyon için sonsuz uzayda martingal gösterimi ve uygulamalarıen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B161890.pdf
Size:
471.12 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: