Optical resolution photoacoustic imaging of multiple probes via single fiber laser with independently adjustable parameters

Date

2017

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO/Europe - EQEC 2017

Print ISSN

Electronic ISSN

Publisher

OSA

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Photoacoustic microscopy (PAM) is a promising imaging modality that combines optical and ultrasound imaging. It combines the advantages of high ultrasonic spatial resolution and high optical contrast. When a short laser pulse illuminates the tissue, absorbed light leads to an acoustic emission via thermoelastic expansion. The laser system needs to generate short enough pulses, i.e., several nanoseconds, to create photoacoustic signals with high efficiency and emit wavelengths in the visible range to excite tissue chromophores in their absorption peaks. To increase penetration depth of imaging, it is also desirable to utilize a wavelength in the NIR range, from 600 to 1200 nm, where biological tissues are relatively transparent.

Course

Other identifiers

Book Title

Citation