Hypergraph-based data partitioning

Date

2013

Editor(s)

Advisor

Aykanat, Cevdet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
4
views
13
downloads

Series

Abstract

A hypergraph is a general version of graph where the edges may connect any number of vertices. By this flexibility, hypergraphs has a larger modeling power that may allow accurate formulaion of many problems of combinatorial scientific computing. This thesis discusses the use of hypergraph-based approaches to solve problems that require data partitioning. The thesis is composed of three parts. In the first part, we show how to implement hypergraph partitioning efficiently using recursive graph bipartitioning. The remaining two parts show how to formulate two important data partitioning problems in parallel computing as hypergraph partitioning. The first problem is global inverted index partitioning for parallel query processing and the second one is row-columnwise sparse matrix partitioning for parallel matrix vector multiplication, where both multiplication and sparse matrix partitioning schemes has novelty. In this thesis, we show that hypergraph models achieve partitions with better quality.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)

Language

English

Type