A cyclic chain complexes over the orbit category
dc.citation.epage | 162 | en_US |
dc.citation.spage | 145 | en_US |
dc.citation.volumeNumber | 3 | en_US |
dc.contributor.author | Hambleton, I. | en_US |
dc.contributor.author | Yalçın, E. | en_US |
dc.date.accessioned | 2019-01-24T17:53:36Z | |
dc.date.available | 2019-01-24T17:53:36Z | |
dc.date.issued | 2010 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Chain complexes of nitely generated free modules over orbit categories provide natural algebraic models for nite G-CW-complexes with prescribed isotropy. We prove a p-hypoelementary Dress induction theorem for K-theory over the orbit category, and use it to re-interpret some results of Oliver and Kropholler-Wall on acyclic complexes. | en_US |
dc.description.provenance | Submitted by Burcu Böke (tburcu@bilkent.edu.tr) on 2019-01-24T17:53:36Z No. of bitstreams: 1 Acyclic_chain_complexes_over_the_orbit_category.pdf: 225442 bytes, checksum: 9925bbed5837df0862cd84c2a6a2af11 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2019-01-24T17:53:36Z (GMT). No. of bitstreams: 1 Acyclic_chain_complexes_over_the_orbit_category.pdf: 225442 bytes, checksum: 9925bbed5837df0862cd84c2a6a2af11 (MD5) Previous issue date: 2010 | en |
dc.identifier.eissn | 1867-5786 | |
dc.identifier.issn | 1867-5778 | |
dc.identifier.uri | http://hdl.handle.net/11693/48328 | |
dc.language.iso | English | en_US |
dc.publisher | Mathematical Institutes of the Universität Münster | en_US |
dc.source.title | Münster Journal of Mathematics | en_US |
dc.title | A cyclic chain complexes over the orbit category | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Acyclic_chain_complexes_over_the_orbit_category.pdf
- Size:
- 220.16 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: