On the classification of Darboux integrable chains
dc.citation.epage | 102702-39 | en_US |
dc.citation.issueNumber | 10 | en_US |
dc.citation.spage | 102702-1 | en_US |
dc.citation.volumeNumber | 49 | en_US |
dc.contributor.author | Habibullin, I. | en_US |
dc.contributor.author | Zheltukhina, N. | en_US |
dc.contributor.author | Pekcan, A. | en_US |
dc.date.accessioned | 2015-07-28T11:58:14Z | |
dc.date.available | 2015-07-28T11:58:14Z | |
dc.date.issued | 2008 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We study differential-difference equation (d/dx) t (n+1,x) =f (t (n,x),t (n+1,x), (d/dx) t (n,x)) with unknown t (n,x) depending on continuous and discrete variables x and n. Equation of such kind is called Darboux integrable, if there exist two functions F and I of a finite number of arguments x, { t (n+k,x) } k=-∞ ∞, {(dk /d xk) t (n,x) } k=1 ∞, such that Dx F=0 and DI=I, where D x is the operator of total differentiation with respect to x and D is the shift operator: Dp (n) =p (n+1). Reformulation of Darboux integrability in terms of finiteness of two characteristic Lie algebras gives an effective tool for classification of integrable equations. The complete list of Darboux integrable equations is given in the case when the function f is of the special form f (u,v,w) =w+g (u,v). © 2009 American Institute of Physics. | en_US |
dc.identifier.doi | 10.1063/1.2992950 | en_US |
dc.identifier.eissn | 1089-7658 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.uri | http://hdl.handle.net/11693/11637 | |
dc.language.iso | English | en_US |
dc.publisher | American Institute of Physics | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.2992950 | en_US |
dc.source.title | Journal of Mathematical Physics | en_US |
dc.subject | Difference Equations | en_US |
dc.subject | Differentiation | en_US |
dc.subject | Integral equations | en_US |
dc.subject | Lie algebras | en_US |
dc.subject | Mathematical operators | en_US |
dc.subject | Difference equations | en_US |
dc.subject | Differentiation | en_US |
dc.subject | Integral equations | en_US |
dc.subject | Lie Algebras | en_US |
dc.subject | Mathematical operators | en_US |
dc.subject | Equations | en_US |
dc.title | On the classification of Darboux integrable chains | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On_the_classification_of_Darboux_integrable_chains.pdf
- Size:
- 344.9 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version