Oxygenation of carbon nanotubes: Atomic structure, energetics, and electronic structure

Date
2003
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physical Review B - Condensed Matter and Materials Physics
Print ISSN
0163-1829
Electronic ISSN
Publisher
American Physical Society
Volume
67
Issue
16
Pages
165424-1 - 165424-10
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

This paper presents an extensive and systematic analysis of the oxygenation of semiconducting and metallic single-wall carbon nanotubes by using the first principles pseudopotential plane wave method. Our study involves the physisorption of oxygen molecules, chemisorption of oxygen atoms and formation of an oxide, and deals with the equilibrium binding geometry and corresponding electronic energy structure. The binding energies of an oxygen molecule physisorbed at different sites are determined by calculating short and long range interactions. The triplet state of the physisorbed oxygen molecule is energetically favorable, whereas the nonmagnetic (spin paired) state yields a relatively stronger binding energy. An oxygen atom is adsorbed on top of the carbon-carbon bond. The zigzag bonds of the nanotubes are weakened and eventually are replaced by a carbon-oxygen-carbon bridge bond. Chemisorption of atomic oxygen and physisorption of an oxygen molecule modify the electronic energy structure of the bare tube in different ways. For a different coverage and pattern, self-consistent field electronic energy structure calculations using the optimized physisorption geometry corresponding to the triplet ground state result in a small energy gap between unoccupied oxygen levels and the top of the valence band of the semiconducting carbon nanotube. These results invalidate the hole doping of the semiconducting carbon nanotube upon the physisorption of oxygen.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)