Graph run-length matrices for histopathological image segmentation

Date

2011-03

Authors

Tosun, A. B.
Gunduz Demir, C.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Medical Imaging

Print ISSN

0278-0062

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers

Volume

30

Issue

3

Pages

721 - 732

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from graph run-length matrices lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation. © 2006 IEEE.

Course

Other identifiers

Book Title

Citation