Design and application of peptide nanofibers for modulating angiogenesis

Available
The embargo period has ended, and this item is now available.

Date

2016-06

Editor(s)

Advisor

Tekinay, Ayşe Begüm

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
3
views
31
downloads

Series

Abstract

Angiogenesis is important in many diseases, such as diabetic wound healing, cancer and corneal neovascularization. Angiogenesis can be induced or inhibited by complex biological systems. Mimicking the complexity in natural systems requires smart supramolecular architectures with predictable properties and functions. Peptides are particularly attractive as molecular building blocks in the bottom-up fabrication of supramolecular structures based on self-assembly and have potential in many important applications in the fields of tissue engineering and regenerative medicine. Peptide-based biomaterials for angiogenesis are currently an intensely investigated topic in pathology and pharmacology related studies. Peptide-based biomaterials can be utilized for the treatment of angiogenesis-deficient complications by mimicking natural glycosaminoglycans. Diabetic ulcerations are largely caused by the lack of vascularization during the wound healing process, and angiogenesis-promoting peptide nanofibers are highly promising for the treatment of these injuries. In addition to the induction of angiogenesis, peptide-based systems can also be used to prevent it in locations where it is detrimental to health. In particular, peptide amphiphiles with anti-angiogenic properties may enable the treatment severe eye diseases, including corneal neovascularization. This thesis describes nature-inspired combinatorial methods for designing peptide nanostructures that display angiogenic and anti-angiogenic functional moieties. The importance of multivalent peptide-constructs for high affinity binding and efficiency will be highlighted. Furthermore, in vitro and in vivo efficiency of angiogenesis related therapeutic agents is reported. Another type of products that will be discussed is black silicon surface that inspired also from nature, utilized for anti-bacterial and unique topographical characteristic.

Course

Other identifiers

Book Title

Degree Discipline

Materials Science and Nanotechnology

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)