Actor prioritized experience replay

Date

2023-11-16

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Artificial Intelligence Research

Print ISSN

1076-9757

Electronic ISSN

1943-5037

Publisher

AI Access Foundation

Volume

78

Issue

Pages

639 - 672

Language

en

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
28
views
6
downloads

Series

Abstract

A widely-studied deep reinforcement learning (RL) technique known as Prioritized Experience Replay (PER) allows agents to learn from transitions sampled with non-uniform probability proportional to their temporal-difference (TD) error. Although it has been shown that PER is one of the most crucial components for the overall performance of deep RL methods in discrete action domains, many empirical studies indicate that it considerably underperforms off-policy actor-critic algorithms. We theoretically show that actor networks cannot be effectively trained with transitions that have large TD errors. As a result, the approximate policy gradient computed under the Q-network diverges from the actual gradient computed under the optimal Q-function. Motivated by this, we introduce a novel experience replay sampling framework for actor-critic methods, which also regards issues with stability and recent findings behind the poor empirical performance of PER. The introduced algorithm suggests a new branch of improvements to PER and schedules effective and efficient training for both actor and critic networks. An extensive set of experiments verifies our theoretical findings, showing that our method outperforms competing approaches and achieves state-of-the-art results over the standard off-policy actor-critic algorithms.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)