Time/cost trade-offs in machine scheduling with controllable processing times
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
Processing time controllability is a critical aspect in scheduling decisions since most of the scheduling practice in industry allows controlling processing times. A very well known example is the computer numerically controlled (CNC) machines in flexible manufacturing systems. Selected processing times for a given set of jobs determine the manufacturing cost of the jobs and strongly affect their scheduling performance. Hence, when making processing time and scheduling decisions at the same time, one must consider both the manufacturing cost and the scheduling performance objectives. In this thesis, we have studied such bicriteria scheduling problems in various scheduling environments including single, parallel and non-identical parallel machine environments. We have included some regular scheduling performance measures such as total weighted completion time and makespan. We have considered the convex manufacturing cost function of CNC turning operation. We have provided alternative methods to find efficient solutions in each problem. We have particularly focused on the single objective problems to get efficient solutions, called the -constraint approach. We have provided efficient formulations for the problems and shown useful properties which led us to develop fast heuristics to generate set of efficient solutions. In this thesis, taking another point of view, we have also studied a conic quadratic reformulation of a machine-job assignment problem with controllable processing times. We have considered a convex compression cost function for each job and solved a profit maximization problem. The convexity of cost functions is a major source of difficulty in finding optimal integer solutions in this problem, but our strengthened conic reformulation has eliminated this difficulty. Our reformulation approach is sufficiently general so that it can also be applied to other mixed 0-1 optimization problems with separable convex cost functions.Our computational results demonstrate that the proposed conic reformulation is very effective for solving the machine-job assignment problem with controllable processing times to optimality. Finally, in this thesis, we have considered rescheduling with controllable processing times. In particular, we show that in contrast to fixed processing times, if we have the flexibility to control the processing times of the jobs, we can generate alternative reactive schedules in response to a disruption such as machine breakdown. We consider a non-identical parallel machining environment where processing times of the jobs are compressible at a certain cost which is a convex function of the compression on the processing time. When rescheduling, it is critical to catch up the initial schedule as soon as possible by reassigning the jobs to the machines and changing their processing times. On the other hand, one must keep the total cost of the jobs at minimum. We present alternative match-up scheduling problems dealing with this trade-off. We use the strong conic reformulation approach in solving these problems. We further provide fast heuristic algorithms.