Time-frequency component analyzer and its application to brain oscillatory activity
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Currently, event-related potential (ERP) signals are analysed in the time domain (ERP technique) or in the frequency domain (Fourier analysis and variants). In techniques of time-domain and frequency-domain analysis (short-time Fourier transform, wavelet transform) assumptions concerning linearity, stationarity, and templates are made about the brain signals. In the time–frequency component analyser (TFCA), the assumption is that the signal has one or more components with non-overlapping supports in the time–frequency plane. In this study, the TFCA technique was applied to ERPs. TFCA determined and extracted the oscillatory components from the signal and, simultaneously, localized them in the time–frequency plane with high resolution and negligible cross-term contamination. The results obtained by means of TFCA were compared with those obtained by means of other commonly used techniques of ERP analysis, such as bilinear time–frequency distributions and wavelet analysis. It is suggested that TFCA may serve as an appropriate tool for capturing the localized ERP components in the time–frequency domain and for studying the intricate, frequency-based dynamics of the human brain. © 2004 Elsevier B.V. All rights reserved