Bi-k-bi clustering: mining large scale gene expression data using two-level biclustering
dc.citation.epage | 721 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.spage | 701 | en_US |
dc.citation.volumeNumber | 4 | en_US |
dc.contributor.author | Çarkacioǧlu, L. | en_US |
dc.contributor.author | Atalay, R. | en_US |
dc.contributor.author | Konu, O. | en_US |
dc.contributor.author | Atalay, V. | en_US |
dc.contributor.author | Can, T. | en_US |
dc.date.accessioned | 2016-02-08T09:55:31Z | |
dc.date.available | 2016-02-08T09:55:31Z | |
dc.date.issued | 2010 | en_US |
dc.department | Department of Molecular Biology and Genetics | en_US |
dc.description.abstract | Due to the increase in gene expression data sets in recent years, various data mining techniques have been proposed for mining gene expression profiles. However, most of these methods target single gene expression data sets and cannot handle all the available gene expression data in public databases in reasonable amount of time and space. In this paper, we propose a novel framework, bi-k-bi clustering, for finding association rules of gene pairs that can easily operate on large scale and multiple heterogeneous data sets. We applied our proposed framework on the available NCBI GEO Homo sapiens data sets. Our results show consistency and relatedness with the available literature and also provides novel associations. Copyright © 2010 Inderscience Enterprises Ltd. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:55:31Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2010 | en |
dc.identifier.doi | 10.1504/IJDMB.2010.037548 | en_US |
dc.identifier.issn | 1748-5673 | |
dc.identifier.uri | http://hdl.handle.net/11693/22099 | |
dc.language.iso | English | en_US |
dc.publisher | Inderscience Enterprises Ltd. | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1504/IJDMB.2010.037548 | en_US |
dc.source.title | International Journal of Data Mining and Bioinformatics | en_US |
dc.subject | APD | en_US |
dc.subject | Association pattern discovery | en_US |
dc.subject | Biclustering | en_US |
dc.subject | Gene expression analysis | en_US |
dc.subject | Spearman rank correlation | en_US |
dc.title | Bi-k-bi clustering: mining large scale gene expression data using two-level biclustering | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- bi-k-bi_paper_IJDMB.pdf
- Size:
- 1.13 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version