Composite regions of feasibility for certain classes of distance constrained network location problems

Date

1996

Authors

Tansel, B. Ç.
Yeşilkökçen, G. N.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
17
downloads

Citation Stats

Series

Abstract

Distance constrained network location involves locating m new facilities on a transport network G so as to satisfy upper bounds on distances between pairs of new facilities and pairs of new and existing facilities. The problem is script N sign℘-complete in general, but polynomially solvable for certain classes. While it is possible to give a consistency characterization for these classes, it does not seem possible to give a global description of the feasible set. However, substantial geometrical insights can be obtained on the feasible set by studying its projections onto the network. The j-th projection defines the j-th composite region which is the set of all points in G at which new facility j can be feasibly placed without violating consistency. We give efficient methods to construct these regions for solvable classes without having to know the feasible set and discuss implications on consistency characterization, what if analysis, and recursive solution constructions.

Source Title

Transportation Science

Publisher

INFORMS

Course

Other identifiers

Book Title

Keywords

Computational complexity, Optimization, Polynomials, Problem solving, Recursive functions, Composite regions, Distance constrained network location, Feasible set, Transportation routes

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English