Non-polynomial fourth order equations which pass the Painlevé test

dc.citation.epage400en_US
dc.citation.issueNumber6en_US
dc.citation.spage387en_US
dc.citation.volumeNumber60en_US
dc.contributor.authorJrad, F.en_US
dc.contributor.authorMugan, U.en_US
dc.date.accessioned2016-02-08T10:23:23Z
dc.date.available2016-02-08T10:23:23Z
dc.date.issued2005en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractThe singular point analysis of fourth order ordinary differential equations in the non-polynomial class are presented. Some new fourth order ordinary differential equations which pass the Painlevé test as well as the known ones are found. © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:23:23Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2005en
dc.identifier.eissn1865-7109
dc.identifier.issn0932-0784
dc.identifier.urihttp://hdl.handle.net/11693/24053
dc.language.isoEnglishen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.source.titleZeitschrift fur Naturforschung - Section A Journal of Physical Sciencesen_US
dc.subjectPainlevé equationsen_US
dc.subjectPainlevé testen_US
dc.titleNon-polynomial fourth order equations which pass the Painlevé testen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Non_polynomial_Fourth_Order_Equations_which_Pass_the_Painleve_Test.pdf
Size:
232.76 KB
Format:
Adobe Portable Document Format
Description:
Full printable version