On envy-free perfect matching

Available
The embargo period has ended, and this item is now available.

Date

2019

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Discrete Applied Mathematics

Print ISSN

0166-218X

Electronic ISSN

Publisher

Elsevier

Volume

261

Issue

Pages

22 - 27

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
11
downloads

Series

Abstract

Consider a situation in which individuals –the buyers –have different valuations for the products of a given set. An envy-free assignment of product items to buyers requires that the items obtained by every buyer be purchased at a price not larger than his/her valuation, and each buyer’s welfare (difference between product value and price) be the largest possible. Under this condition, the problem of finding prices maximizing the seller’s revenue is known to be APX -hard even for unit-demand bidders (with several other inapproximability results for different variants), that is, when each buyer wishes to buy at most one item. Here, we focus on Envy-free Complete Allocation, the special case where a fixed number of copies of each product is available, each of the n buyers must get exactly one product item, and all the products must be sold. This case is known to be solvable in O(n4) time. We revisit a series of results on this problem and, answering a question found in Leonard (1983), show how to solve it in O(n3) time by connections to perfect matchings and shortest paths.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)