Random walks on symmethric spaces and inequalities for matrix spectra

dc.citation.epage59en_US
dc.citation.issueNumber3 - Janen_US
dc.citation.spage37en_US
dc.citation.volumeNumber319en_US
dc.contributor.authorKlyachko, A.en_US
dc.date.accessioned2015-07-28T11:56:24Z
dc.date.available2015-07-28T11:56:24Z
dc.date.issued2000-11-01en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractUsing harmonic analysis on symmetric spaces we reduce the singular spectral problem for products of matrices to the recently solved spectral problem for sums of Hermitian matrices. This proves R.C. Thompson’s conjecture [Matrix Spectral Inequalities, Johns Hopkins University Press, Baltimore, MD, 1988]. © 2000 Elsevier Science Inc. All rights reserved.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T11:56:24Z (GMT). No. of bitstreams: 1 10.1016-S0024-3795(00)00219-6.pdf: 183028 bytes, checksum: b88cc093dbfdb652bb6d63741235973b (MD5)en
dc.identifier.doi10.1016/S0024-3795(00)00219-6en_US
dc.identifier.eissn1873-1856
dc.identifier.issn0024-3795
dc.identifier.urihttp://hdl.handle.net/11693/10948
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.publisherElsevier Inc.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/S0024-3795(00)00219-6en_US
dc.source.titleLinear Algebra and its Applicationsen_US
dc.subjectEigenvaluesen_US
dc.subjectSingular valuesen_US
dc.subjectSpherical functionsen_US
dc.subjectRandom walksen_US
dc.titleRandom walks on symmethric spaces and inequalities for matrix spectraen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Random_walks_on_symmetric_spaces_and_inequalities_for_matrix_spectra.pdf
Size:
178.74 KB
Format:
Adobe Portable Document Format
Description:
Full printable version