Recommendation systems as technologies of the self: algorithmic control and the formation of music taste
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The article brings to light the use of recommender systems as technologies of the self, complementing the observations in current literature regarding their employment as technologies of ‘soft’ power. User practices on the music recommendation website last.fm reveal that many users do not only utilize the website to receive guidance about music products but also to examine and transform an aspect of their self, i.e. their ‘music taste’. The capacity of assisting users in self-cultivation practices, however, is not unique to last.fm but stems from certain properties shared by all recommendation systems. Furthermore, unlike other oft-studied digital/web technologies of the self which facilitate ‘self-publishing’ vis-a`-vis virtual companions in social media, recommender algorithms themselves can act as ‘intimate experts’, accompanying users in their self-care practices. Thus, recommendation systems can facilitate both algorithmic control and creative self-transformation, which calls for a theorization of this new cultural medium as a space of tension.