Large language models surpass human experts in predicting neuroscience results

buir.contributor.authorYılmaz, Batı
buir.contributor.orcidYılmaz, Batı|0000-0002-8824-0345
dc.citation.epage15
dc.citation.spage1
dc.contributor.authorLuo, Xiaoliang
dc.contributor.authorRechardt, Akilles
dc.contributor.authorSun, Guangzhi
dc.contributor.authorNejad, Kevin K.
dc.contributor.authorYanez, Felipe
dc.contributor.authorYılmaz, Batı
dc.contributor.authorLee, Kangjoo
dc.contributor.authorCohen, Alexandra O.
dc.contributor.authorBorghesani, Valentina
dc.contributor.authorPashkov, Anton
dc.contributor.authorMarinazzo, Daniele
dc.contributor.authorNicholas, Jonathan
dc.contributor.authorSalatiello, Alessandro
dc.contributor.authorSucholutsky, Ilia
dc.contributor.authorMinervini, Pasquale
dc.contributor.authorRazavi, Sepehr
dc.contributor.authorRocca, Roberta
dc.contributor.authorYusifov, Elkhan
dc.contributor.authorOkalova, Tereza
dc.contributor.authorGu, Nianlong
dc.contributor.authorFerianc, Martin
dc.contributor.authorKhona, Mikail
dc.contributor.authorPatil, Kaustubh R.
dc.contributor.authorLee, Pui-Shee
dc.contributor.authorMata, Rui
dc.contributor.authorMyers, Nicholas E.
dc.contributor.authorBizley, Jennifer K.
dc.contributor.authorMusslick, Sebastian
dc.contributor.authorBilgin, Isil Poyraz
dc.contributor.authorNiso, Guiomar
dc.contributor.authorAles, Justin M.
dc.contributor.authorGaebler, Michael
dc.contributor.authorRatan Murty, N. Apurva
dc.contributor.authorLoued-Khenissi, Leyla
dc.contributor.authorBehler, Anna
dc.contributor.authorHall, Chloe M.
dc.contributor.authorDafflon, Jessica
dc.contributor.authorBao, Sherry Dongqi
dc.contributor.authorLove, Bradley C.
dc.date.accessioned2025-02-22T16:39:46Z
dc.date.available2025-02-22T16:39:46Z
dc.date.issued2024-11-24
dc.departmentNational Magnetic Resonance Research Center (UMRAM)
dc.description.abstractScientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts. Here, to evaluate this possibility, we created BrainBench, a forward-looking benchmark for predicting neuroscience results. We find that LLMs surpass experts in predicting experimental outcomes. BrainGPT, an LLM we tuned on the neuroscience literature, performed better yet. Like human experts, when LLMs indicated high confidence in their predictions, their responses were more likely to be correct, which presages a future where LLMs assist humans in making discoveries. Our approach is not neuroscience specific and is transferable to other knowledge-intensive endeavours. Large language models (LLMs) can synthesize vast amounts of information. Luo et al. show that LLMs-especially BrainGPT, an LLM the authors tuned on the neuroscience literature-outperform experts in predicting neuroscience results and could assist scientists in making future discoveries.
dc.identifier.doi10.1038/s41562-024-02046-9
dc.identifier.eissn2397-3374
dc.identifier.urihttps://hdl.handle.net/11693/116653
dc.language.isoEnglish
dc.publisherNATURE PORTFOLIO
dc.relation.isversionofhttps://dx.doi.org/10.1038/s41562-024-02046-9
dc.rightsCC BY 4.0 Deed (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleNature Human Behaviour
dc.titleLarge language models surpass human experts in predicting neuroscience results
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Large_language_models_surpass_human_experts_in_predicting_neuroscience_results.pdf
Size:
3.34 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: