Stability of phase difference trajectories of networks of kuramoto oscillators with time-varying couplings and intrinsic frequencies

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

SIAM Journal on Applied Dynamical Systems

Print ISSN

1536-0040

Electronic ISSN

Publisher

Society for Industrial and Applied Mathematics Publications

Volume

17

Issue

1

Pages

457 - 483

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
6
downloads

Series

Abstract

We study dynamics of phase differences (PDs) of coupled oscillators where both the intrinsic frequencies and the couplings vary in time. In the case the coupling coefficients are all nonnegative, we prove that the PDs are asymptotically stable if there exists T > 0 such that the aggregation of the time-varying graphs across any time interval of length T has a spanning tree. We also consider the situation that the coupling coefficients may be negative and provide sufficient conditions for the asymptotic stability of the PD dynamics. Due to time variations, the PDs are asymptotic to time-varying patterns rather than constant values. Hence, the PD dynamics can be regarded as a generalization of the well-known phase-locking phenomena. We explicitly investigate several particular cases of time-varying graph structures, including asymptotically periodic PDs due to periodic coupling coefficients and intrinsic frequencies, small perturbations, and fast-switching near constant coupling and frequencies, which lead to PD dynamics close to a phase-locked one. Numerical examples are provided to illustrate the theoretical results.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)