On some of the simple composition factors of the biset functor of P-permutation modules

Available
The embargo period has ended, and this item is now available.

Date

2016-07

Editor(s)

Advisor

Barker, Laurence J.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
9
downloads

Series

Abstract

Let k be an algebraically closed field of characteristic p, which is a prime, and C denote the field of complex numbers. Given a finite group G, letting ppk(G) denote the Grothendieck group of p-permutation kG-modules, we consider the biset functor of p-permutation modules, Cppk, by tensoring with C. By a theorem of Serge Bouc, it is known that the simple biset functors S H,V are parametrized by pairs (H, V ) where H is a finite group, and V is a simple COut(H)-module. At present, the full classification of the simple biset functors apparent in Cppk is not known. In this thesis, we find new simple functors SH;V apparent in Cppk where H is a specific type of p-hypo-elementary B-group. The technique for this result makes use of Maxime Ducellier's notion of a p-permutation functor and his use of D-pairs to classify the simple factors of the p-permutation functor of p-permutation modules Cpppk p-perm.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type