Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer
dc.citation.epage | 14641 | en_US |
dc.citation.issueNumber | 13 | en_US |
dc.citation.spage | 14632 | en_US |
dc.citation.volumeNumber | 24 | en_US |
dc.contributor.author | Dhama R. | en_US |
dc.contributor.author | Rashed, A. R. | en_US |
dc.contributor.author | Caligiuri V. | en_US |
dc.contributor.author | El Kabbash M. | en_US |
dc.contributor.author | Strangi, G. | en_US |
dc.contributor.author | De Luca A. | en_US |
dc.date.accessioned | 2018-04-12T10:56:34Z | |
dc.date.available | 2018-04-12T10:56:34Z | |
dc.date.issued | 2016 | en_US |
dc.department | Nanotechnology Research Center (NANOTAM) | en_US |
dc.description.abstract | Inherent absorptive losses affect the performance of all plasmonic devices, limiting their fascinating applications in the visible range. Here, we report on the enhanced optical transparency obtained as a result of the broadband mitigation of optical losses in nanocomposite polymeric films, embedding core-shell quantum dots (CdSe@ZnS QDs) and gold nanoparticles (Au-NPs). Exciton-plasmon coupling enables non-radiative energy transfer processes from QDs to metal NPs, resulting in gain induced transparency of the hybrid flexible systems. Experimental evidences, such as fluorescence quenching and modifications of fluorescence lifetimes confirm the presence of this strong coupling between plexcitonic elements. Measures performed by means of an ultra-fast broadband pump-probe setup demonstrate loss compensation of gold NPs dispersed in plastic network in presence of gain. Furthermore, we compare two films containing different concentrations of gold NPs and same amount of QDs, to investigate the role of acceptor concentration (Au-NPs) in order to promote an effective and efficient energy transfer mechanism. Gain induced transparency in bulk systems represents a promising path towards the realization of loss compensated plasmonic devices. © 2016 Optical Society of America. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:56:34Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1364/OE.24.014632 | en_US |
dc.identifier.issn | 10944087 | |
dc.identifier.uri | http://hdl.handle.net/11693/36886 | |
dc.language.iso | English | en_US |
dc.publisher | OSA - The Optical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1364/OE.24.014632 | en_US |
dc.source.title | Optics Express | en_US |
dc.subject | Energy transfer | en_US |
dc.subject | Excitons | en_US |
dc.subject | Fluorescence | en_US |
dc.subject | Gold | en_US |
dc.subject | Gold alloys | en_US |
dc.subject | Nanocomposite films | en_US |
dc.subject | Nanocomposites | en_US |
dc.subject | Plasmons | en_US |
dc.subject | Quenching | en_US |
dc.subject | Semiconductor quantum dots | en_US |
dc.subject | Transparency | en_US |
dc.subject | Zinc sulfide | en_US |
dc.subject | Acceptor concentrations | en_US |
dc.subject | Core-shell quantum dots | en_US |
dc.subject | Efficient energy transfer | en_US |
dc.subject | Experimental evidence | en_US |
dc.subject | Fluorescence lifetimes | en_US |
dc.subject | Fluorescence quenching | en_US |
dc.subject | Nanocomposite polymers | en_US |
dc.subject | Nonradiative energy transfer | en_US |
dc.subject | Polymer films | en_US |
dc.title | Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer.pdf
- Size:
- 1.56 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version