Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer

dc.citation.epage14641en_US
dc.citation.issueNumber13en_US
dc.citation.spage14632en_US
dc.citation.volumeNumber24en_US
dc.contributor.authorDhama R.en_US
dc.contributor.authorRashed, A. R.en_US
dc.contributor.authorCaligiuri V.en_US
dc.contributor.authorEl Kabbash M.en_US
dc.contributor.authorStrangi, G.en_US
dc.contributor.authorDe Luca A.en_US
dc.date.accessioned2018-04-12T10:56:34Z
dc.date.available2018-04-12T10:56:34Z
dc.date.issued2016en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractInherent absorptive losses affect the performance of all plasmonic devices, limiting their fascinating applications in the visible range. Here, we report on the enhanced optical transparency obtained as a result of the broadband mitigation of optical losses in nanocomposite polymeric films, embedding core-shell quantum dots (CdSe@ZnS QDs) and gold nanoparticles (Au-NPs). Exciton-plasmon coupling enables non-radiative energy transfer processes from QDs to metal NPs, resulting in gain induced transparency of the hybrid flexible systems. Experimental evidences, such as fluorescence quenching and modifications of fluorescence lifetimes confirm the presence of this strong coupling between plexcitonic elements. Measures performed by means of an ultra-fast broadband pump-probe setup demonstrate loss compensation of gold NPs dispersed in plastic network in presence of gain. Furthermore, we compare two films containing different concentrations of gold NPs and same amount of QDs, to investigate the role of acceptor concentration (Au-NPs) in order to promote an effective and efficient energy transfer mechanism. Gain induced transparency in bulk systems represents a promising path towards the realization of loss compensated plasmonic devices. © 2016 Optical Society of America.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:56:34Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1364/OE.24.014632en_US
dc.identifier.issn10944087
dc.identifier.urihttp://hdl.handle.net/11693/36886
dc.language.isoEnglishen_US
dc.publisherOSA - The Optical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1364/OE.24.014632en_US
dc.source.titleOptics Expressen_US
dc.subjectEnergy transferen_US
dc.subjectExcitonsen_US
dc.subjectFluorescenceen_US
dc.subjectGolden_US
dc.subjectGold alloysen_US
dc.subjectNanocomposite filmsen_US
dc.subjectNanocompositesen_US
dc.subjectPlasmonsen_US
dc.subjectQuenchingen_US
dc.subjectSemiconductor quantum dotsen_US
dc.subjectTransparencyen_US
dc.subjectZinc sulfideen_US
dc.subjectAcceptor concentrationsen_US
dc.subjectCore-shell quantum dotsen_US
dc.subjectEfficient energy transferen_US
dc.subjectExperimental evidenceen_US
dc.subjectFluorescence lifetimesen_US
dc.subjectFluorescence quenchingen_US
dc.subjectNanocomposite polymersen_US
dc.subjectNonradiative energy transferen_US
dc.subjectPolymer filmsen_US
dc.titleBroadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transferen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version