Experimental demonstration of transmission enhancement through subwavelength apertures at microwave frequencies

Date

2012

Editor(s)

Advisor

Özbay, Ekmel

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
4
views
8
downloads

Series

Abstract

Metamaterials are artificial materials with novel electromagnetic characteristics. They are used in many applications including imaging, super lenses, cloaking, transmission enhancement, beaming and recently in nano applications. One of the major building blocks is the split ring resonators (SRR). We can construct metamaterials by using a single or an array of the SRRs. In this thesis, enhanced transmission through subwavelength apertures, which is one of the applications of metamaterials, is obtained by using various split ring resonators configurations. We demonstrated transmission enhancement with Connected Split Ring Resonators (CSRRs), Omega-like Split Ring Resonators and Stack-like Split Ring Resonators through circular and rectangular subwavelength apertures experimentally and numerically at the microwave frequencies. We report the highest experimental transmission enhancement results in the literature so far. Besides high factors, we also obtained multi-peak resonant characteristics with Stack-like SRR designs. Furthermore, we analyzed these various SRR samples numerically in order to understand the resonance behavior. We also discuss the effects of shorting the loops, omitting the components of the SRRs and aperture geometry to the resonance frequency. Finally, we applied Tight Binding methods to analyze the multi-peak characteristics of the Stack-like SRR design.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)