Tritangents to smooth sextic curves

buir.contributor.authorDegtyarev, Alex
buir.contributor.orcidDegtyarev, Alex|0000-0001-6586-4094
dc.citation.epage2338en_US
dc.citation.issueNumber6en_US
dc.citation.spage2299en_US
dc.citation.volumeNumber72en_US
dc.contributor.authorDegtyarev, Alex
dc.date.accessioned2023-03-02T13:41:26Z
dc.date.available2023-03-02T13:41:26Z
dc.date.issued2022-10-21
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe prove that a smooth plane sextic curve can have at most 72 tritangents, whereas a smooth real sextic may have at most 66 real tritangents. © 2022 Association des Annales de l'Institut Fourier. All rights reserved.en_US
dc.description.provenanceSubmitted by Cem Çağatay Akgün (cem.akgun@bilkent.edu.tr) on 2023-03-02T13:41:26Z No. of bitstreams: 1 Tritangents_to_smooth_sextic_curves.pdf: 1742109 bytes, checksum: 134e774d4e7d2d40475505975a4d6af6 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-03-02T13:41:26Z (GMT). No. of bitstreams: 1 Tritangents_to_smooth_sextic_curves.pdf: 1742109 bytes, checksum: 134e774d4e7d2d40475505975a4d6af6 (MD5) Previous issue date: 2022-10-21en
dc.identifier.doi10.5802/aif.3491en_US
dc.identifier.issn03730956
dc.identifier.urihttp://hdl.handle.net/11693/112029
dc.language.isoEnglishen_US
dc.publisherAssociation des Annales de l'Institut Fourieren_US
dc.relation.isversionofhttps://dx.doi.org/10.5802/aif.3491en_US
dc.source.titleAnnales de l'Institut Fourieren_US
dc.subjectK3-surfaceen_US
dc.subjectNiemeier latticeen_US
dc.subjectSextic curveen_US
dc.subjectTritangenten_US
dc.titleTritangents to smooth sextic curvesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tritangents_to_smooth_sextic_curves.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: