Tritangents to smooth sextic curves
buir.contributor.author | Degtyarev, Alex | |
buir.contributor.orcid | Degtyarev, Alex|0000-0001-6586-4094 | |
dc.citation.epage | 2338 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.spage | 2299 | en_US |
dc.citation.volumeNumber | 72 | en_US |
dc.contributor.author | Degtyarev, Alex | |
dc.date.accessioned | 2023-03-02T13:41:26Z | |
dc.date.available | 2023-03-02T13:41:26Z | |
dc.date.issued | 2022-10-21 | |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We prove that a smooth plane sextic curve can have at most 72 tritangents, whereas a smooth real sextic may have at most 66 real tritangents. © 2022 Association des Annales de l'Institut Fourier. All rights reserved. | en_US |
dc.description.provenance | Submitted by Cem Çağatay Akgün (cem.akgun@bilkent.edu.tr) on 2023-03-02T13:41:26Z No. of bitstreams: 1 Tritangents_to_smooth_sextic_curves.pdf: 1742109 bytes, checksum: 134e774d4e7d2d40475505975a4d6af6 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-03-02T13:41:26Z (GMT). No. of bitstreams: 1 Tritangents_to_smooth_sextic_curves.pdf: 1742109 bytes, checksum: 134e774d4e7d2d40475505975a4d6af6 (MD5) Previous issue date: 2022-10-21 | en |
dc.identifier.doi | 10.5802/aif.3491 | en_US |
dc.identifier.issn | 03730956 | |
dc.identifier.uri | http://hdl.handle.net/11693/112029 | |
dc.language.iso | English | en_US |
dc.publisher | Association des Annales de l'Institut Fourier | en_US |
dc.relation.isversionof | https://dx.doi.org/10.5802/aif.3491 | en_US |
dc.source.title | Annales de l'Institut Fourier | en_US |
dc.subject | K3-surface | en_US |
dc.subject | Niemeier lattice | en_US |
dc.subject | Sextic curve | en_US |
dc.subject | Tritangent | en_US |
dc.title | Tritangents to smooth sextic curves | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Tritangents_to_smooth_sextic_curves.pdf
- Size:
- 1.66 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: