Variations on a theme of Mirsky
buir.contributor.author | Güloğlu, Ahmet | |
dc.citation.epage | 39 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 1 | en_US |
dc.citation.volumeNumber | 19 | en_US |
dc.contributor.author | Akbal, Yıldırım | |
dc.contributor.author | Güloğlu, Ahmet | |
dc.coverage.spatial | Singapore | en_US |
dc.date.accessioned | 2023-02-21T07:23:56Z | |
dc.date.available | 2023-02-21T07:23:56Z | |
dc.date.issued | 2022-07-05 | |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let k and r be non-zero integers with r≥2. An integer is called r-free if it is not divisible by the rth power of a prime. A result of Mirsky states that there are infinitely many primes p such that p+k is r-free. In this paper, we study an additive Goldbach-type problem and prove two uniform distribution results using these primes. We also study certain properties of primes p such that p+a1,…,p+aℓ are simultaneously r-free, where a1,…,aℓ are non-zero integers and ℓ≥1 . | en_US |
dc.description.provenance | Submitted by Betül Özen (ozen@bilkent.edu.tr) on 2023-02-21T07:23:56Z No. of bitstreams: 1 Variations_on_a_theme_of_Mirsky.pdf: 462947 bytes, checksum: a0e06863cbd108ebb7d41c3b943fbceb (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-02-21T07:23:56Z (GMT). No. of bitstreams: 1 Variations_on_a_theme_of_Mirsky.pdf: 462947 bytes, checksum: a0e06863cbd108ebb7d41c3b943fbceb (MD5) Previous issue date: 2022-07-05 | en |
dc.identifier.doi | 10.1142/S179304212350001X | en_US |
dc.identifier.eissn | 1793-7310 | |
dc.identifier.issn | 1793-0421 | |
dc.identifier.uri | http://hdl.handle.net/11693/111566 | |
dc.language.iso | English | en_US |
dc.publisher | World Scientific Publishing | en_US |
dc.relation.isversionof | https://doi.org/10.1142/S179304212350001X | en_US |
dc.source.title | International Journal of Number Theory | en_US |
dc.subject | Hardy–Littlewood circle method | en_US |
dc.subject | r-free shifted primes | en_US |
dc.subject | Goldbach-type additive problems | en_US |
dc.title | Variations on a theme of Mirsky | en_US |
dc.type | Article | en_US |