A note on the distribution of d3(n) in arithmetic progressions

buir.contributor.authorParry, Tomos
dc.citation.epage1708
dc.citation.issueNumber4
dc.citation.spage1697
dc.citation.volumeNumber65
dc.contributor.authorParry, Tomos
dc.date.accessioned2025-02-24T12:39:05Z
dc.date.available2025-02-24T12:39:05Z
dc.date.issued2024-10-14
dc.departmentDepartment of Mathematics
dc.description.abstractNguyen has shown that on averaging over a=1,...,q the 3-fold divisor function has exponent of distribution 2/3, following Banks et al. (Int Math Res Not 1:1-25, 2005). We follow (Blomer, in: Q J Math 59:275-286, 2008) which leads to stronger bounds.
dc.identifier.doi10.1007/s11139-024-00956-w
dc.identifier.eissn1572-9303
dc.identifier.issn1382-4090
dc.identifier.urihttps://hdl.handle.net/11693/116761
dc.language.isoEnglish
dc.publisherSpringer New York LLC
dc.relation.isversionofhttps://dx.doi.org/10.1007/s11139-024-00956-w
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleThe Ramanujan Journal
dc.subjectDivisor functions
dc.subjectDivisor functions in arithmetic progressions
dc.subject3-fold divisor function
dc.subject3-fold divisor function in arithmetic progressions
dc.titleA note on the distribution of d3(n) in arithmetic progressions
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_note_on_the_distribution_of_d3(n)_in_arithmetic_progressions.pdf
Size:
220.31 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: