Monomial Gotzmann sets

buir.advisorSezer, Müfit
dc.contributor.authorPir, Ata Fırat
dc.date.accessioned2016-01-08T18:15:06Z
dc.date.available2016-01-08T18:15:06Z
dc.date.issued2011
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references leaves 21-22.en_US
dc.description.abstractA homogeneous set of monomials in a quotient of the polynomial ring S := F[x1, . . . , xn] is called Gotzmann if the size of this set grows minimally when multiplied with the variables. We note that Gotzmann sets in the quotient R := F[x1, . . . , xn]/(x a 1 ) arise from certain Gotzmann sets in S. Then we partition the monomials in a Gotzmann set in S with respect to the multiplicity of xi and obtain bounds on the size of a component in the partition depending on neighboring components. We show that if the growth of the size of a component is larger than the size of a neighboring component, then this component is a multiple of a Gotzmann set in F[x1, . . . , xi−1, xi+1, . . . xn]. We also adopt some properties of the minimal growth of the Hilbert function in S to R.en_US
dc.description.statementofresponsibilityPir, Ata Fıraten_US
dc.format.extentvi, 22 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/15217
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGotzmann setsen_US
dc.subjectMacaulay-Lex ringsen_US
dc.subjectThe Hilbert functionsen_US
dc.subject.lccQA248 .P57 2011en_US
dc.subject.lcshSet theory.en_US
dc.subject.lcshRings (Algebra)en_US
dc.subject.lcshHilbert space.en_US
dc.subject.lcshMacaulay-Lex rings.en_US
dc.titleMonomial Gotzmann setsen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0005064.pdf
Size:
425.08 KB
Format:
Adobe Portable Document Format