Spatial and spatial-frequency filtering using one-dimensional graded-index lattices with defects
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The potential of one-dimensional, periodic, graded-index, isotropic dielectric lattices with defects in multiband spatial and spatial-frequency filtering is studied. It is shown that both narrow- and wide-bandpass filters can be obtained at a proper choice of the number, location, and parameters of the defects placed inside the relatively thin slabs. The peculiarities of achieving multibandness for narrow- and wide-bandpass filters are discussed. Multiband narrow-bandpass filtering is closely related to the transmission features that are associated with Fabry-Pérot resonators with semitransparent planar mirrors. Correspondingly, the observed transmission can be interpreted in terms of the equivalent parameters of such resonators. In particular, it is shown that the resonators filled with an ultralow-index medium can be mimicked, so that defect-mode angle-domain spectrum can be rarefied at large angles of incidence. The obtained results are also expected to be applicable for prediction of the angle-domain behavior of transmission in case of piecewise-homogeneous multilayers.