Segmentation informed deep learning algorithms for cardiac MRI reconstruction

Available
The embargo period has ended, and this item is now available.

Date

2023-08

Editor(s)

Advisor

Çukur, Tolga

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
66
views
54
downloads

Series

Abstract

Deep learning methods have produced impressive results in accelerated magnetic resonance imaging (MRI) reconstruction from under-sampled k-space acquisitions. However, existing MRI reconstruction models are commonly trained with loss functions that uniformly weigh contributions from separate voxels across the field-of-view (FOV), without attributing focus on relatively important regions within the FOV. Furthermore common frameworks for model training rely on availability of large sets of fully-sampled MRI data to construct a ground-truth for the network output. This heavy reliance is undesirable as it is challenging to collect such large datasets in many applications, and even impossible for high spatiotemporal-resolution protocols. In this thesis, we first introduce a self-supervised learning methodology for dynamic cardiac MRI that trains the network to reconstruct acquisitions in the absence of fully-sampled data. We then introduce a segmentation-aware reconstruction framework which implicitly guides the reconstruction process around an ROI with the segmentation error signal. Lastly, we introduce RATNet, a reconstruction framework augmented with attention capabilities which explicitly carries spatial information into the reconstruction process to focus around regions of interest. Self-supervision reduces the excessive demand on fully-sampled data whereas the segmentation-aware re-construction framework backpropagates the spatial information signal in to the reconstruction network. Lastly, RATNet incorporates the attention layers into reconstruction which are sensitive to focusing information supplied by the spatial information network. We demonstrate recovering fully-sampled images from under-sampled acquisitions in cardiac MRI and show their state-of-the-art performance in medical image reconstruction.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)