Deep convolutional networks for PET super-resolution

buir.contributor.authorÖzaltan, Cemhan Kaan
buir.contributor.authorTürkölmez, Emir
buir.contributor.authorAksoy, Selim
buir.contributor.authorÇiçek, A. Ercüment
buir.contributor.orcidÖzaltan, Cemhan Kaan|0009-0006-7142-2093
buir.contributor.orcidAksoy, Selim|0000-0003-4185-0565
buir.contributor.orcidÇiçek, A. Ercüment|0000-0001-8613-6619
dc.citation.epage1292636-9
dc.citation.spage1292636-1
dc.citation.volumeNumber12926
dc.contributor.authorÖzaltan, Cemhan Kaan
dc.contributor.authorTürkölmez, Emir
dc.contributor.authorNamer,I. Jacques
dc.contributor.authorÇiçek, A. Ercüment
dc.contributor.authorAksoy, Selim
dc.contributor.editorColliot, Olivier
dc.date.accessioned2025-02-20T16:10:22Z
dc.date.available2025-02-20T16:10:22Z
dc.date.issued2024
dc.departmentDepartment of Computer Engineering
dc.descriptionConferance Name: Conference on Medical Imaging - Image Processing Date of Conference: 19-22 FEB, 2024 Location: California, US
dc.description.abstractPositron emission tomography (PET) provides valuable functional information that is widely used in clinical domains such as oncology and neurology. However, the structural quality of PET images may not be sufficient to effectively evaluate small regions of interest. Image super-resolution techniques aim to recover a high-resolution image from an input low-resolution version. We study adaptations of deep convolutional neural network architectures for improving the spatial resolution of PET images. The proposed super-resolution model involves a deep architecture that uses convolutional blocks together with various residual connections for more effective and efficient training. We use the supervised setting where the downscaled versions of the original PET images are given as the low-resolution input to the deep networks and the original images are used as the high-resolution target data to be recovered. Experiments show that the proposed model performs better than a multi-scale convolutional architecture according to both quantitative performance metrics and visual qualitative evaluation.
dc.identifier.doi10.1117/12.3007549
dc.identifier.issn1605-7422
dc.identifier.urihttps://hdl.handle.net/11693/116520
dc.language.isoEnglish
dc.publisherSPIE; Philips Res; Merck & Co Inc; Guerbet Grp; GE Res
dc.relation.ispartofProgress in Biomedical Optics and Imaging
dc.relation.isversionofhttps://dx.doi.org/10.1117/12.3007549
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleMEDICAL IMAGING 2024: IMAGE PROCESSING
dc.subjectPositron emission tomography
dc.subjectConvolutional neural networks
dc.subjectImage super-resolution
dc.titleDeep convolutional networks for PET super-resolution
dc.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep_Convolutional_Networks_for_PET_Super-Resolution.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: