Hamiltonian equations in ℝ3

dc.citation.epage5705en_US
dc.citation.issueNumber12en_US
dc.citation.spage5688en_US
dc.citation.volumeNumber44en_US
dc.contributor.authorAy, A.en_US
dc.contributor.authorGürses, M.en_US
dc.contributor.authorZheltukhin, K.en_US
dc.date.accessioned2016-02-08T10:28:35Z
dc.date.available2016-02-08T10:28:35Z
dc.date.issued2003-08en_US
dc.departmentDepartment of Mathematicsen_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractThe Hamiltonian formulation of N=3 systems is considered in general. The most general solution of the Jacobi equation in ℝ3 is proposed. The form of the solution is shown to be valid also in the neighborhood of some irregular points. Compatible Poisson structures and corresponding bi-Hamiltonian systems are also discussed. Hamiltonian structures, the classification of irregular points and the corresponding reduced first order differential equations of several examples are given.en_US
dc.identifier.doi10.1063/1.1619204en_US
dc.identifier.eissn1089-7658
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/11693/24388
dc.language.isoEnglishen_US
dc.publisherAIP Publishing LLCen_US
dc.relation.isversionofhttps://doi.org/10.1063/1.1619204en_US
dc.source.titleJournal of Mathematical Physicsen_US
dc.titleHamiltonian equations in ℝ3en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hamiltonian_equations_in_R3.pdf
Size:
119.6 KB
Format:
Adobe Portable Document Format
Description:
Full printable version