Signal-to-noise ratio of diverging waves in multiscattering media: Effects of signal duration and divergence angle
Date
Authors
Advisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Abstract
In this paper, SNR maximization in coded diverging waves is studied, and experimental verification of the results is presented. Complementary Golay sequences and binary phase shift keying modulation are used to code the transmitted signal. The SNR in speckle and pin targets is maximized with respect to chip signal length. The maximum SNR is obtained in diverging wave transmission when the chip signal is as short a duration as the array permits. We determined the optimum diverging wave profile to confine the transmitted ultrasound energy in the imaging sector. The optimized profile also contributes to the SNR maximization. The SNR performances of the optimized coded diverging wave and conventional single-focused phased array imaging are compared on a single frame basis. The SNR of the optimized coded diverging wave is higher than that of the conventional single-focused phased array imaging at all depths and regions.