Neural underpinnings of biological motion perception under attentional load

Date

2022-06

Editor(s)

Advisor

Ürgen, Burcu Ayşen

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Bilkent University

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Humans can detect and differentiate biological motion from non-biological motion stimuli effortlessly, even if the stimuli were shown as simplistic as a composition of moving dots (i.e. point-light displays [PLD]). Considering its survival and social significance, BM perception is assumed to occur automatically. Indeed, Thorn-ton and Vuong [1] showed that task-irrelevant BM in the periphery interfered with task performance at the fovea. However, the neural underpinnings of this bottom-up processing of BM lacks thorough examination in the field. Under selec-tive attention, BM perception is supported by a network of regions including the occipito-temporal, parietal, and premotor cortices. A retinotopy mapping study on BM showed distinct maps for its processing under and away from selective attention [2]. Based on these findings, we investigated how bottom-up percep-tion of BM would be processed under attentional load when it was shown away from the focus of attention as a task-irrelevant stimulus. Participants (N=31) underwent an fMRI study in which they performed an attentionally demand-ing visual detection task at the fovea while intact or scrambled PLDs of BM were shown at the periphery. Our results showed the main effect of attentional load in fronto-parietal regions; as well as, the main effect of peripheral stimuli in occipito-temporal cortex. Both univariate and multivariate pattern analysis results support the attentional load modulation on BM. Lastly, ROI results on each core node of BM processing network expanded these findings by showing that the attentional load modulation on both intact and scrambled BM stimuli were the strongest in bilateral occipito-temporal regions as compared to parietal and premotor cortices. In conclusion, BM was processed within the motion sensi-tive regions in the occipito-temporal cortex when shown away from the selective attention, and was modulated by attentional load.

Course

Other identifiers

Book Title

Citation

item.page.isversionof