Electronic structure of conventional slater type antiferromagnetic insulators: AIrO3 (A=Sr, Ba) perovskites

Date
2022
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Journal of Physics: Conference Series
Print ISSN
17426588
Electronic ISSN
Publisher
Institute of Physics
Volume
2315
Issue
1
Pages
1 - 10
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

The structural, mechanical, and electronic properties of Perovskite BaIrO3 and SrIrO3 compounds based on the density functional theory (DFT) have been examined in four different structures (C2/c, R-3m, P6_3/mmc and Pm-3m) and Pnma structure, respectively. The spin polarized generalized gradient approximation has been used for modeling exchange-correlation effects. As a result of spin polarized calculations, it has been observed that BaIrO3 compound showed magnetic properties in C2/c and R-3m structures, but not in Pm-3m and P6_3/mmc structures. SrIrO3 compound also shows magnetic properties in Pnma structure. The elastic constants have been calculated using the strain-stress method and the other related quantities (the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, anisotropy factor, sound velocities, and Debye temperature) have also been estimated. In electronic band structure calculations, while Pm-3m and P6_3/mmc structures of NaIrO3 compound are metallic and semiconductor (Eg = 1.190 eV indirect), respectively, while C2/c and R-3m structures showing magnetic properties are metallic in spin down state and semiconductor (Eg=0.992 eV indirect and Eg=0.665 eV direct, respectively) in the spin up state. The Pmna structure in the SrIrO3 compound is a semiconductor in both spin states (Eg=0.701 eV “0.632 eV” indirect in the spin up “spin down”). © 2022 Institute of Physics Publishing. All rights reserved.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)