A multi-stage stochastic programming approach in master production scheduling

dc.citation.epage179en_US
dc.citation.issueNumber1en_US
dc.citation.spage166en_US
dc.citation.volumeNumber213en_US
dc.contributor.authorKörpeoğlu, E.en_US
dc.contributor.authorYaman, H.en_US
dc.contributor.authorAktürk, M. S.en_US
dc.date.accessioned2016-02-08T09:51:34Z
dc.date.available2016-02-08T09:51:34Z
dc.date.issued2011en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractMaster Production Schedules (MPS) are widely used in industry, especially within Enterprise Resource Planning (ERP) software. The classical approach for generating MPS assumes infinite capacity, fixed processing times, and a single scenario for demand forecasts. In this paper, we question these assumptions and consider a problem with finite capacity, controllable processing times, and several demand scenarios instead of just one. We use a multi-stage stochastic programming approach in order to come up with the maximum expected profit given the demand scenarios. Controllable processing times enlarge the solution space so that the limited capacity of production resources are utilized more effectively. We propose an effective formulation that enables an extensive computational study. Our computational results clearly indicate that instead of relying on relatively simple heuristic methods, multi-stage stochastic programming can be used effectively to solve MPS problems, and that controllability increases the performance of multi-stage solutions.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:51:34Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.1016/j.ejor.2011.02.032en_US
dc.identifier.eissn1872-6860
dc.identifier.issn0377-2217
dc.identifier.urihttp://hdl.handle.net/11693/21821
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ejor.2011.02.032en_US
dc.source.titleEuropean Journal of Operational Researchen_US
dc.subjectControllable processing timesen_US
dc.subjectFlexible manufacturingen_US
dc.subjectMaster production schedulingen_US
dc.subjectStochastic programmingen_US
dc.titleA multi-stage stochastic programming approach in master production schedulingen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_multi-stage_stochastic_programming_approach_in_master_production_scheduling.pdf
Size:
728.5 KB
Format:
Adobe Portable Document Format
Description:
Full printable version