Singlet and Triplet Exciton Harvesting in the Thin Films of Colloidal Quantum Dots Interfacing Phosphorescent Small Organic Molecules

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage25969en_US
dc.citation.issueNumber45en_US
dc.citation.spage25964en_US
dc.citation.volumeNumber118en_US
dc.contributor.authorGuzelturk, B.en_US
dc.contributor.authorHernandez Martinez P.L.en_US
dc.contributor.authorZhao, D.en_US
dc.contributor.authorSun X.W.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2016-02-08T10:36:58Z
dc.date.available2016-02-08T10:36:58Z
dc.date.issued2014en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractEfficient nonradiative energy transfer is reported in an inorganic/organic thin film that consists of a CdSe/ZnS core/shell colloidal quantum dot (QD) layer interfaced with a phosphorescent small organic molecule (FIrpic) codoped fluorescent host (TCTA) layer. The nonradiative energy transfer in these thin films is revealed to have a cascaded energy transfer nature: first from the fluorescent host TCTA to phosphorescent FIrpic and then to QDs. The nonradiative energy transfer in these films enables very efficient singlet and triplet state harvesting by the QDs with a concomitant fluorescence enhancement factor up to 2.5-fold, while overall nonradiative energy transfer efficiency is as high as 95%. The experimental results are successfully supported by the theoretical energy transfer model developed here, which considers exciton diffusion assisted Förster-type near-field dipole-dipole coupling within the hybrid films. © 2014 American Chemical Society.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:36:58Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014en
dc.identifier.doi10.1021/jp509799ren_US
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11693/24969
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/jp509799ren_US
dc.source.titleJournal of Physical Chemistry Cen_US
dc.subjectEnergy efficiencyen_US
dc.subjectEnergy transferen_US
dc.subjectExcitonsen_US
dc.subjectFluorescenceen_US
dc.subjectInterfaces (materials)en_US
dc.subjectLight emissionen_US
dc.subjectMoleculesen_US
dc.subjectNanocrystalsen_US
dc.subjectPhosphorescenceen_US
dc.subjectSemiconductor quantum dotsen_US
dc.subjectColloidal quantum dotsen_US
dc.subjectDipole-dipole couplingsen_US
dc.subjectEnergy transfer modelsen_US
dc.subjectFluorescence enhancementen_US
dc.subjectNonradiative energy transferen_US
dc.subjectSinglet and triplet excitonsen_US
dc.subjectSinglet and triplet stateen_US
dc.subjectSmall organic moleculesen_US
dc.subjectThin filmsen_US
dc.titleSinglet and Triplet Exciton Harvesting in the Thin Films of Colloidal Quantum Dots Interfacing Phosphorescent Small Organic Moleculesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Singlet and Triplet Exciton Harvesting in the Thin Films of Colloidal Quantum Dots Interfacing Phosphorescent Small Organic Molecules.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Description:
Full printable version