Fixed order controller design via parametric methods

Date

2003

Editor(s)

Advisor

Özgüler, A. Bülent

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
6
downloads

Series

Abstract

In this thesis, the problem of parameterizing stabilizing fixed-order controllers for linear time-invariant single-input single-output systems is studied. Using a generalization of the Hermite-Biehler theorem, a new algorithm is given for the determination of stabilizing gains for linear time-invariant systems. This algorithm requires a test of the sign pattern of a rational function at the real roots of a polynomial. By applying this constant gain stabilization algorithm to three subsidiary plants, the set of all stabilizing first-order controllers can be determined. The method given is applicable to both continuous and discrete time systems. It is also applicable to plants with interval type uncertainty. Generalization of this method to high-order controller is outlined. The problem of determining all stabilizing first-order controllers that places the poles of the closed-loop system in a desired stability region is then solved. The algorithm given relies on a generalization of the Hermite-Biehler theorem to polynomials with complex coefficients. Finally, the concept of local convex directions is studied. A necessary and sufficient condition for a polynomial to be a local convex direction of another Hurwitz stable polynomial is derived. The condition given constitutes a generalization of Rantzer’s phase growth condition for global convex directions. It is used to determine convex directions for certain subsets of Hurwitz stable polynomials.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)