Neurochemical differences between bipolar disorder type I and II in superior temporal cortices: a proton magnetic resonance spectroscopy study

Available
The embargo period has ended, and this item is now available.

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Affective Disorders

Print ISSN

0165-0327

Electronic ISSN

Publisher

Elsevier B.V.

Volume

235

Issue

Pages

15 - 19

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
32
downloads

Series

Abstract

Background: Despite the diagnostic challenges in categorizing bipolar disorder subtypes, bipolar I and II disorders (BD-I and BD-II respectively) are valid indices for researchers. Subtle neurobiological differences may underlie clinical differences between mood disorder subtypes. The aims of this study were to investigate neurochemical differences between bipolar disorder subtypes. Methods: Euthymic BD-II patients (n = 21) are compared with BD-I (n = 28) and healthy comparison subjects (HCs, n = 30). Magnetic Resonance Imaging (MRI) and proton spectroscopy (1H MRS) were performed on a 3T Siemens Tim Trio system. MRS voxels were located in the left/right superior temporal cortices, and spectra acquired with the single voxel Point REsolved Spectroscopy Sequence (PRESS). The spectroscopic data were analyzed with LCModel (Version 6.3.0) software. Results: There were significant differences between groups in terms of glutamate [F = 6.27, p = 0.003], glutamate + glutamine [F = 6.08, p = 0.004], inositol containing compounds (Ino) (F = 9.25, p < 0.001), NAA [F = 7.63, p = 0.001] and creatine + phosphocreatine [F = 11.06, p < 0.001] in the left hemisphere and Ino [F = 5.65, p = 0.005] in the right hemisphere. Post-hoc comparisons showed that the BD-I disorder group had significantly lower metabolite levels in comparison to the BD-II and the HC groups. Limitations: This was a cross-sectional study with a small sample size. In addition, patients were on various psychotropic medications, which may have impacted the results. Conclusions: Neurochemical levels, in the superior temporal cortices, measured with 1H-MRS discriminated between BD-II and BD-I. Although further studies are needed, one may speculate that the superior temporal cortices (particularly left hemispheric) play a critical role, whose pathology may be related to subtyping bipolar disorder.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)