A compact set without Markov's property but with an extension operator for C∞-functions
dc.citation.epage | 35 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 27 | en_US |
dc.citation.volumeNumber | 119 | en_US |
dc.contributor.author | Goncharov, A. | en_US |
dc.date.accessioned | 2016-02-08T10:49:30Z | |
dc.date.available | 2016-02-08T10:49:30Z | |
dc.date.issued | 1996 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We give an example of a compact set K ⊂ [0,1] such that the space ε(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator L : ε(K) → C∞[0,1]. At the same time, Markov's inequality is not satisfied for certain polynomials on K. | en_US |
dc.identifier.doi | 10.4064/sm-119-1-27-35 | en_US |
dc.identifier.eissn | 1730-6337 | |
dc.identifier.issn | 0039-3223 | |
dc.identifier.uri | http://hdl.handle.net/11693/25718 | |
dc.language.iso | English | en_US |
dc.publisher | Polish Academy of Sciences, Institute of Mathematics | en_US |
dc.relation.isversionof | https://doi.org/10.4064/sm-119-1-27-35 | en_US |
dc.source.title | Studia Mathematica | en_US |
dc.title | A compact set without Markov's property but with an extension operator for C∞-functions | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A_compact_set_without_Markov's_property_but_with_an_extension_operator_for_C∞-functions.pdf
- Size:
- 338 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version