Analytic and asymptotic properties of generalized Linnik probability densities
dc.citation.epage | 578 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.spage | 555 | en_US |
dc.citation.volumeNumber | 217 | en_US |
dc.contributor.author | Erdogan, M. B. | en_US |
dc.contributor.author | Ostrovskii, I. V. | en_US |
dc.date.accessioned | 2015-07-28T11:56:44Z | |
dc.date.available | 2015-07-28T11:56:44Z | |
dc.date.issued | 1998-01-15 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | This paper studies the properties of the probability density function pα,ν,n(x) of the n-variate generalized Linnik distribution whose characteristic function φα,ν,n(t) is given by where {norm of matrix}t{norm of matrix} is the Euclidean norm of t ∈ ℝn. Integral representations of pα,ν,n(x) are obtained and used to derive the asymptotic expansions of pα,ν,n(x) when {norm of matrix}x{norm of matrix}→0 and {norm of matrix}x{norm of matrix}→∞ respectively. It is shown that under certain conditions which are arithmetic in nature, pα,ν,n(x) can be represented in terms of entire functions. © 2009 Birkhäuser Boston. | en_US |
dc.description.provenance | Made available in DSpace on 2015-07-28T11:56:44Z (GMT). No. of bitstreams: 1 10.1006-jmaa.1997.5734.pdf: 267338 bytes, checksum: aff74cdaf2fb1d54c32a15772f373ace (MD5) | en |
dc.identifier.doi | 10.1006/jmaa.1997.5734 | en_US |
dc.identifier.eissn | 1096-0813 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | http://hdl.handle.net/11693/11059 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1006/jmaa.1997.5734 | en_US |
dc.source.title | Journal of Mathematical Analysis and Applications | en_US |
dc.title | Analytic and asymptotic properties of generalized Linnik probability densities | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Analytic_and_Asymptotic_Properties_of_Generalized_Linnik_Probability_Densities.pdf
- Size:
- 261.07 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version