Lexical cohesion based topic modeling for summarization

dc.citation.epage592en_US
dc.citation.spage582en_US
dc.contributor.authorErcan, Gönençen_US
dc.contributor.authorÇiçekli, İlyasen_US
dc.coverage.spatialHaifa, Israel
dc.date.accessioned2016-02-08T11:38:33Z
dc.date.available2016-02-08T11:38:33Z
dc.date.issued2008-02en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionDate of Conference: 17-23 February, 2008
dc.descriptionConference name: International Conference on Intelligent Text Processing and Computational Linguistics CICLing 2008: Computational Linguistics and Intelligent Text Processing
dc.description.abstractIn this paper, we attack the problem of forming extracts for text summarization. Forming extracts involves selecting the most representative and significant sentences from the text. Our method takes advantage of the lexical cohesion structure in the text in order to evaluate significance of sentences. Lexical chains have been used in summarization research to analyze the lexical cohesion structure and represent topics in a text. Our algorithm represents topics by sets of co-located lexical chains to take advantage of more lexical cohesion clues. Our algorithm segments the text with respect to each topic and finds the most important topic segments. Our summarization algorithm has achieved better results, compared to some other lexical chain based algorithms. © 2008 Springer-Verlag Berlin Heidelberg.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T11:38:33Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008en
dc.identifier.doi10.1007/978-3-540-78135-6_50en_US
dc.identifier.urihttp://hdl.handle.net/11693/26880
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-540-78135-6_50en_US
dc.source.titleInternational Conference on Intelligent Text Processing and Computational Linguistics CICLing 2008: Computational Linguistics and Intelligent Text Processingen_US
dc.subjectLexical chainsen_US
dc.subjectLexical cohesionen_US
dc.subjectText summarizationen_US
dc.subjectAdhesionen_US
dc.subjectComputational linguisticsen_US
dc.subjectLinguisticsen_US
dc.subjectWord processingen_US
dc.subjectIntelligent text processingen_US
dc.subjectInternational conferencesen_US
dc.subjectLexical cohesion structureen_US
dc.subjectText processingen_US
dc.titleLexical cohesion based topic modeling for summarizationen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lexical cohesion based topic modeling for summarization.pdf
Size:
333.92 KB
Format:
Adobe Portable Document Format
Description:
Full printable version