Integrable equations on time scales

dc.citation.epage113510-22en_US
dc.citation.issueNumber11en_US
dc.citation.spage113510-1en_US
dc.citation.volumeNumber46en_US
dc.contributor.authorGürses, M.en_US
dc.contributor.authorGuseinov G. S.en_US
dc.contributor.authorSilindir, B.en_US
dc.date.accessioned2016-02-08T10:22:00Z
dc.date.available2016-02-08T10:22:00Z
dc.date.issued2005en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractIntegrable systems are usually given in terms of functions of continuous variables (on R), in terms of functions of discrete variables (on Z), and recently in terms of functions of q -variables (on Kq). We formulate the Gel'fand-Dikii (GD) formalism on time scales by using the delta differentiation operator and find more general integrable nonlinear evolutionary equations. In particular they yield integrable equations over integers (difference equations) and over q -numbers (q -difference equations). We formulate the GD formalism also in terms of shift operators for all regular-discrete time scales. We give a method allowing to construct the recursion operators for integrable systems on time scales. Finally, we give a trace formula on time scales and then construct infinitely many conserved quantities (Casimirs) of the integrable systems on time scales. © 2005 American Institute of Physics.en_US
dc.identifier.doi10.1063/1.2116380en_US
dc.identifier.eissn1089-7658
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/11693/23960
dc.language.isoEnglishen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.2116380en_US
dc.source.titleJournal of Mathematical Physicsen_US
dc.titleIntegrable equations on time scalesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Integrable_equations_on_time_scales.pdf
Size:
324.56 KB
Format:
Adobe Portable Document Format
Description:
Full printable version