A simple duality proof in convex quadratic programming with a quadratic constraint, and some applications

dc.citation.epage158en_US
dc.citation.issueNumber1en_US
dc.citation.spage151en_US
dc.citation.volumeNumber124en_US
dc.contributor.authorPinar, M. C.en_US
dc.date.accessioned2015-07-28T12:07:02Z
dc.date.available2015-07-28T12:07:02Z
dc.date.issued2000-07-01en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractIn this paper a simple derivation of duality is presented for convex quadratic programs with a convex quadratic constraint. This problem arises in a number of applications including trust region subproblems of nonlinear programming, regularized solution of ill-posed least squares problems, and ridge regression problems in statistical analysis. In general, the dual problem is a concave maximization problem with a linear equality constraint. We apply the duality result to: (1) the trust region subproblem, (2) the smoothing of empirical functions, and (3) to piecewise quadratic trust region subproblems arising in nonlinear robust Huber M-estimation problems in statistics. The results are obtained from a straightforward application of Lagrange duality. Ó 2000 Elsevier Science B.V. All rights reserved.en_US
dc.identifier.doi10.1016/S0377-2217(99)00173-3en_US
dc.identifier.issn0377-2217
dc.identifier.urihttp://hdl.handle.net/11693/13577
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/S0377-2217(99)00173-3en_US
dc.source.titleEuropean Journa of Operational Researchen_US
dc.subjectLagrange Dualityen_US
dc.subjectConvex Quadratic Programming With A Convex Quadratic Constrainten_US
dc.subjectIll-posed Least Squares Problemsen_US
dc.subjectTrust Region Subproblemsen_US
dc.titleA simple duality proof in convex quadratic programming with a quadratic constraint, and some applicationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-S0377-2217(99)00173-3.pdf
Size:
118.04 KB
Format:
Adobe Portable Document Format
Description:
Full printable version