Practical hardware demonstration of a multi-sensor goal-oriented semantic signal processing and communications network

buir.contributor.authorAkkoç, Semih
buir.contributor.authorÇınar, Ayberk
buir.contributor.authorErcan, Berkehan
buir.contributor.authorKalfa, Mert
buir.contributor.authorArıkan, Orhan
buir.contributor.orcidAkkoç, Semih|0009-0007-0743-7220
buir.contributor.orcidÇınar, Ayberk|0009-0002-1268-916X
buir.contributor.orcidErcan, Berkehan|0009-0003-4897-2829
buir.contributor.orcidKalfa, Mert|0000-0002-6462-1776
buir.contributor.orcidArıkan, Orhan|0000-0002-3698-8888
dc.citation.epage107363-11
dc.citation.issueNumber1
dc.citation.spage107363-1
dc.citation.volumeNumber362
dc.contributor.authorAkkoç, Semih
dc.contributor.authorÇınar, Ayberk
dc.contributor.authorErcan, Berkehan
dc.contributor.authorKalfa, Mert
dc.contributor.authorArıkan, Orhan
dc.date.accessioned2025-02-27T08:12:23Z
dc.date.available2025-02-27T08:12:23Z
dc.date.issued2025-01
dc.departmentDepartment of Electrical and Electronics Engineering
dc.description.abstractRecent advancements in machine learning, particularly real-time extraction of rich semantic information, reshape signal processing techniques and related hardware architectures. To address the highly challenging requirements of next-generation signal processing applications in networked platforms, we investigate low-power hardware implementation alternatives for a multi-sensor, goal-oriented semantic communications network. Specifically, we focus on cost-effective Raspberry Pis in a multi-sensor semantic video communication application, showcasing adaptability from traditional CPU/GPU configurations. Additionally, we provide a preliminary investigation on implementing semantic extraction tasks through in-memory computation using memristor arrays to further emphasize the potential future of low-power low-cost semantic signal processing. Hardware demonstrations using Raspberry Pi 4Bs and simulations with in-memory computation architectures offer promising hardware architectures with cost-effective and low-power sensor alternatives to the next-generation semantic signal processing applications and semantic communication systems.
dc.embargo.release2027-01-01
dc.identifier.doi10.1016/j.jfranklin.2024.107363
dc.identifier.eissn1879-2693
dc.identifier.issn0016-0032
dc.identifier.urihttps://hdl.handle.net/11693/116909
dc.language.isoEnglish
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://doi.org/10.1016/j.jfranklin.2024.107363
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleFranklin Institute. Journal
dc.subjectSemantic signal processing
dc.subjectSemantic communications
dc.subjectSemantic sensor hardware
dc.subjectGoal-oriented communications
dc.titlePractical hardware demonstration of a multi-sensor goal-oriented semantic signal processing and communications network
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Practical_hardware_demonstration_of_a_multi-sensor_goal-oriented_semantic_signal_processing_and_communications_network.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: