Robust optimization of multi-objective multi-armed bandits with contaminated bandit feedback

Available
The embargo period has ended, and this item is now available.

Date

2022-06

Editor(s)

Advisor

Tekin, Cem

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
9
views
57
downloads

Series

Abstract

Multi-objective multi-armed bandits (MO-MAB) is an important extension of the standard MAB problem that has found a wide variety of applications ranging from clinical trials to online recommender systems. We consider Pareto set identification problem in the adversarial MO-MAB setting, where at each arm pull, with probability ϵ ∈ (0,1/2), an adversary corrupts the reward samples by replacing the true samples with the samples from an arbitrary distribution of its choosing. Existing MO-MAB methods in the literature are incapable of handling such attacks unless there are strict restrictions on the contamination distributions. As a result, these methods perform poorly in practice where such restrictions on the adversary are not valid in general. To fill this gap in the literature, we propose two different robust, median-based optimization methods that can approximate the Pareto optimal set from contaminated samples. We prove a sample complexity bound of the form O(1/α^2 log(1/δ)) for the proposed methods, where α>0 and δ ∈ (0,1) are accuracy and confidence parameters, respectively, that can be set by the user according to his/her preference. This bound matches, in the worst case, the bounds from [1, Theorem 4] and [2, Theorem 3] that consider the adversary free setting. We compare the proposed methods with a mean-based method from the MO-MAB literature on real-world and synthetic experiments. Numerical results verify our theoretical expectations and show the importance of robust algorithm design in the adversarial setting.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)